If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-34x-289=0
a = 3; b = -34; c = -289;
Δ = b2-4ac
Δ = -342-4·3·(-289)
Δ = 4624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4624}=68$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-68}{2*3}=\frac{-34}{6} =-5+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+68}{2*3}=\frac{102}{6} =17 $
| 110=37.06+0.25x | | y=-2(30)+4 | | 2,448/48=x | | 10x+120-120=180-120 | | 3x^2-34x+289=0 | | 110=3706+0.25x | | 56=-2x+4 | | 1/4x+7+2.5x=-9.5 | | 12(5y+2y)=4y-(6y-9y) | | -9x+2=-3x-10 | | 5x+5x+23+37=180 | | -a/6—-31=64 | | 25x2-8x-17=0 | | w-w+2w-2w+3w=18 | | x-16x3=136 | | x/6=4,2 | | 4(x-25)=2x-10 | | 8-5/7x=-31 | | 1/2(24+2v)=5v-33 | | (5x+23)+37+(2x)=180 | | 4(x-25)=2x10 | | -4(r+2)=(2-2r) | | 35=-4.9t^2+50t | | -3s=5−2s | | 3x+19=10x-9 | | -p/7+16=21 | | 10(1.375)^19t=80 | | 12d-5d+d=8 | | 11c-9c+c+3c=12 | | 12q-9q=15 | | 15p-11p=12 | | 11k+5k-12k=16 |